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Importance of NEC 

NEC remains a devastating condition  
in significantly preterm infants and  

a major cause of both mortality and 
morbidity.1 Data from the UK National 
Neonatal Audit Programme (NNAP) 
identified that in 2020, 6.5% of infants 
born at less than 32 weeks’ gestation 
experienced at least one episode of NEC, 
equating to 417 infants annually.2 The large 
UK trials SIFT (Speed of Increasing milk 
Feeds Trial)3 and ELFIN (Enteral 
Lactoferrin supplementation in Newborn 
very preterm infants)4 identified rates of 
NEC of 5.3% and 5.6%, respectively. 
Surgery is needed in between 10% and 
50% of cases depending on the cohort,  
and up to 50% of cases will die.5  

Neurodevelopmental outcome is worse 
after NEC than after meningitis or sepsis.6 
Caring for an infant with NEC is costly in 
financial terms to the NHS and in 
financial, practical and emotional terms to 
families.7 Despite significant investment in 
NEC research, rates have not fallen and in 
some countries are rising as survival in the 
most extreme preterm infants improves. 
NEC pathogenesis is complex and 
incompletely understood, but is believed  
to occur when the complicated interactions 
between the immune system, gut 
microbiome and diet result in an 
inflammatory process within the bowel. 

Modifiers of NEC incidence 
NEC is reduced in preterm infants with 
optimal antenatal steroid use (relative risk, 
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Human milk is known to reduce the risk of necrotising enterocolitis (NEC) in preterm infants, but 
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1. Although NEC is a major cause of 

mortality and morbidity in preterm 
infants, its pathogenesis remains 
unclear.  

2. HMOs are complex sugars in breast 
milk that cannot be digested by 
humans. Their composition varies 
widely from woman to woman.  

3. DSLNT is one HMO that may protect 
against NEC.  

4. Supplementation and synthesis of 
HMOs are subjects for future research. 

RR=0.5),8 optimal cord management 
(RR=0.91),9 and in those not receiving 
prolonged (odds ratio, OR=1.21)10 or no 
early antibiotics (OR=0.25).11 Meta-
analysis of probiotic trials shows an almost 
halving of NEC incidence (RR=0.54)12 and 
BOOST (Benefits of Oxygen Saturation 
Targeting Trial) identified that higher 
saturation targeting reduced NEC 
(RR=1.22 for lower saturations).13,14 Milk 
feed type is also key to NEC prevention; 
infants receiving maternal milk have a 
significant risk reduction (RR=0.69)15 and 
donor milk appears preferable to formula 
(RR=1.87)16 (TABLE 1). The mechanisms 
through which human milk, and especially 
mother’s own milk (MOM), are protective 
are not well understood but there appears 
to be a dose dependent response.17,18 
Individual breast milk components have 
been studied and supplemented in clinical 
trials in preterm infants, notably lactoferrin 
which was supplemented (in bovine form) 
in the recent large UK trial ELFIN4 but 
which did not change NEC rates. Similarly 
increasing feeds at 18 or 30mL/kg/day did 
not impact NEC rates, as shown by the 
SIFT study.3 Some treatments have been 
shown to be associated with increased NEC 
notably anti-reflux treatments,19 which are 
not now recommended in preterm infants.  

Human milk oligosaccharides 
HMOs are complex sugars found in breast 
milk and are the third most abundant solid 
constituent, at between 5 and 15g/L 
depending on lactation stage.20 They have 
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multiple roles that may contribute to help 
prevent NEC. HMOs cannot be digested by 
humans as we lack the enzymes to do so, 
rather they are digested by the bacteria 
within the gut. They therefore act as a food 
substrate for bacteria that do have the 
enzymes to digest them, which in turn 
produce small molecules (metabolites) that 
impact on the host metabolism, or feed 
other bacteria. Certain bacteria are better 
able to use HMOs as food, including those 
traditionally considered ‘healthy’ gut 
bacteria, for example, bifidobacteria. Thus, 
HMOs act as ‘prebiotic’ promoting a 
healthy bifidobacterial rich gut micro-
biome. They can also act directly on the 
gut epithelial cells to promote development 
and maintain tight junctions between  
cells, modifying the ability of bacteria to 
translocate across the gut endothelium and 
promote an inflammatory response 
(FIGURE 1).  

HMO structure 
HMOs are built from the 
monosaccharides:  
■ glucose 
■ galactose 
■ N-acetylglucosamine 
■ fucose 
■ sialic acid (N-acetylneuraminic acid).  
These combine to provide a backbone of 
disaccharides: 
■ lactose, which forms the reducing end of 

the structure 
■ lacto-N-biose  
■ N-acetyllactosamine, which can elongate 

the backbone structure.  
Additional modifications to the structure 
include: branching, with addition of the 
disaccharide through β1-6 linkage; 
addition of fucose (fucosilation) or 
addition of sialic acid (sialylation). These 
processes are determined by the genetic 
ability of the woman to produce two 
fucosyltransferases, which is in turn 
determined by her secretor status and 
Lewis positive status. Women with the 
secretor gene produce more 2-fucosylated 
HMOs and those with the Lewis gene, 
more 3-fucosylated HMOs. Some women 
carry neither gene and will produce very 
low, but detectable, levels of both. The 
combinations of sugars allow more than 
150 different HMOs to be made, and 
profiles vary woman to woman (FIGURE 2).   

Animal data 
In rat pups gavaged with formula, with and 
without supplemental HMO, and then 

Bell’s stage II or III NEC compared to 
healthy infants or those with stage I NEC.22 
This was replicated in a larger cohort of 33 
preterm infants with NEC and 37 
gestational and age matched controls, with 
breast milk samples taken from feeds just 
before development of NEC. Again, no 
difference in total HMOs was seen, but 
DSLNT was significantly lower in infants 
with both medical and surgical NEC.23 A 
threshold level of 241nmol/mL was 
suggested as protective against NEC. This 
study was also able to explore the 
microbiome in association with DSLNT 
levels, and demonstrated an association 
between the pattern of gut bacteria, 

exposed to NEC-inducing hypoxia, one 

specific HMO called disialyllacto-N-tetraose 

(DSLNT) resulted in improved pathology 

scores in the intestine of the rats.21  

Human observational data 

In human preterm infants, observational 

data suggest that the same HMO, DSLNT, 

may play a role in NEC prevention. Breast 

milk received by 200 infants who remained 

healthy and eight who developed NEC had 

total HMO profiling and measurement of 

DSLNT levels. Although total HMO 

quantities did not differ, levels of DSLNT 

were significantly lower in the infants with 

TABLE 1  Modifiers of NEC incidence. Key: NEC=necrotising enterocolitis; MOM=mother’s own 
milk.

Modifier of NEC 
incidence

Author, year Type of study Relative risk or odds 
ratio for NEC (95% 
confidence interval)

Antenatal 
corticosteroid use 
(corticosteroids vs 
none/placebo)

McGoldrick et al, 
20208

Cochrane systematic 
review

0.5 (0.32-0.78)

Optimal cord 
management 
(delayed vs early 
cord clamping)

Rabe et al, 20199 Cochrane systematic 
review

0.91 (0.64-1.28) 

Prolonged antibiotic 
treatment (≥4 days 
vs <4 days)

Cotten et al, 200910 Multi-centre 
retrospective cohort 
study

1.21 (0.98-1.51)

Early antibiotic 
treatment (early vs 
no antibiotics)

Li et al, 202011 Multi-centre 
retrospective cohort 
study

0.25 (0.14-0.47)

Probiotics (any vs 
none)

Sharif et al, 202012 Cochrane systematic 
review

0.54 (0.45-0.65)

Oxygen saturation 
targeting (85-89% vs 
91-95%)

Saugstad et al, 201414 Meta-analysis and 
systematic review

1.25 (1.05-1.49)

Type of milk feeds 
(MOM within first 7 
postnatal days)

Battersby et al, 
201715

Whole-population 
surveillance study

0.69 (0.6-0.78)

Type of milk feeds 
(no vs any bovine-
derived products 
within first 14 
postnatal days)

Battersby et al, 
201715

Whole-population 
surveillance study

0.61 (0.39-0.83)

Type of milk feeds 
(formula vs donor 
human milk)

Quigley et al, 201916 Cochrane systematic 
review

1.87 (1.23-2.85)

Advancement of 
enteral feeds (18 vs 
30mL/kg/day) 

Dorling et al, 20193 Multi-centre 
randomised 
controlled trial

0.88 (0.68-1.16)

Anti-reflux 
treatment (H2-
blockers vs none) 

Guillet et al, 200619 Multi-centre 
retrospective cohort 
study

1.71 (1.34-2.19)



need to begin by establishing safety and 
tolerability and dosing aspects, with the 
final aim being to supplement at levels 
above the threshold value identified by 
Masi et al23 for clinical benefit (TABLE 2). 
Such studies have been undertaken 
successfully, even on large scales, such as  
in the mechanistic study MAGPIE 
(Mechanisms Affecting the Gut of Preterm 
Infants in Enteral feeding studies), which 
sampled stool and urine in infants 
recruited to the ELFIN study across 13 

described as the preterm gut community 
type (PGCT) and the levels of DSLNT 
above or below the threshold proposed. 
Infants with DSLNT levels above the 
threshold were more likely to progress to a 
mature PGCT over time than those with 
DSLNT levels below the threshold. More 
mature PGCTs were associated with more 
beneficial bacteria, such as bifidobacteria.23 

Human clinical trial data 
To date, all clinical human trial data are 
from term infants where HMOs are added 
to formula. In 2015, a formula 
supplemented with 2′-fucosyllactose 
(2′FL) was given to healthy term infants 
and their growth compared to infants 
receiving formula without the HMO 
supplementation; no differences were 
observed. As the first human trial, there 
were no adverse effects noted.24 The 
infants also had their serum levels of 
inflammatory cytokines measured and had 
levels more comparable to breastfed 
infants than standard formula fed 
infants.25 Supplementation of term infants 
with two HMOs (2′FL and lacto-N-
neotetraose, LNnT) was also well tolerated 
and did not affect growth.26 There was also 
some analysis of the stool microbiome in 
this study and the authors saw a shift in 
the bacterial patterns that more closely 
resembled breastfed infants than 
unsupplemented formula fed infants.27 
Five different HMOs have also been 
studied in a formula, this time including 
3-fucosylated HMOs as well as 2′FL and 
LNnT. Growth patterns and tolerability 
were similar compared to standard 
formula in term infants.28  

Potential preterm clinical trials 
There are currently no data relating to the 
deliberate supplementation of preterm 
infants’ diet with HMOs, but synthesis of 
specific HMOs is possible, opening up the 
possibility that clinical trials could 
commence. Given the complexities of the 
pathogenesis of NEC, the lack of 
availability of large quantities of HMOs 
and the associated costs, it is not currently 
likely that a large-scale supplementation of 
HMOs, akin to the ELFIN study, is feasible.  

Given the demonstration of impact on 
gut microbiome, through which benefit 
may be being modulated, smaller scale 
feasibility studies are possible, which could 
also include measures of the gut 
microbiome/metabolome and infant 
inflammatory status. Such studies would 
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TABLE 2  Potential areas for further studies.

Potential future research areas Clinical purpose

Synthesis of HMOs in powder form To allow supplementation to infants 
regardless of the type of milk feeds

Feasibility studies that investigate delivery 
of HMO supplements

To confirm safety and tolerability of HMO 
supplementation

Dosing studies with tolerability and 
microbiomic endpoints

To develop dosing schedules of HMO 
supplementation

Quantification of HMOs in milk samples 
from donor milk banks

To select donor human milk with highest 
content of DSLNT for infants at highest risk  
of NEC

Bedside HMO analysis To allow targeted supplementation of 
maternal or donor milk at the cotside

FIGURE 1  Mechanisms mediated by HMOs and influencing infant health (adapted from Masi 
et al31). HMOs serve as ‘food’ for potentially beneficial bacteria (eg bifidobacteria) and therefore 
promote their growth, which in turn protects an infant’s gut from pathogen colonisation. 
Metabolites produced from HMO digestion (eg short chain fatty acids) provide an energy 
source for colonocytes, increase mucin production and lower intestinal pH. HMOs act as anti-
adhesive antimicrobials by coating pathogens and preventing their adhesion to epithelial 
surfaces. They can act directly on the gut epithelial cells to promote their maturation and 
maintain tight junctions between cells. This decreases the ability of bacteria to translocate 
across the gut endothelium. Interaction between epithelial cells and HMOs influences gene 
expression, which results in regulation of the inflammatory response (via cytokines, cell surface 
receptors, etc). HMOs can interact with the immune system by influencing lymphocyte 
maturation (Th1/Th2 response) and modulating leukocyte adhesion to endothelial cells. 

units, and performed microbiomic and 
metabolomic assessments.29  

Supplementation possibilities 
Preterm infants could potentially be 
supplemented with HMOs by several 
routes. It is theoretically possible, but 
costly, to quantify the HMO profile and 
DSLNT levels in individual milk samples, 
as was carried out by Autran22 and Masi.23 
This would theoretically allow milk banks 
to select milk with the highest levels of 
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FIGURE 2  HMO structures. (A) Monosaccharides, (B) Disaccharides, (C) Examples of type of 
linkages and modification characterising HMOs. Key: Glc=glucose; Gal=galactose; GlcNAc=N-
acetylglucosamine; Neu5Ac=N-acetylneuraminic acid; Fuc=fucose; LNB=lacto-N-biose; 
LacNAc=N-acetyllactosamine; Lac=lactose; HMOs=human milk oligosaccharides; 
2′FL=2′-fucosyllactose; 3FL=3-fucosyllactose; LNnT=lacto-N-neotetraose; 3′SL=3′-sialyllactose; 
6′SL=6′-sialyllactose; LNT=lacto-N-tetraose; LNFP II=lacto-N-fucopentaose II; LST c=sialyl-LNT c; 
LNH=lacto-N-hexaose; DSLNT=disialyllacto-N-tetraose. Adapted from Masi et al.31

FIGURE 3  HMOs play a key role in modulation of the infant’s intestinal epithelium, immune 
system and gut microbiome. Key: SCFAs=short chain fatty acids. Adapted from Masi et al.31

DSLNT to give preferentially to the infants 
most at risk of NEC. However, given the 
importance of the relationship between the 
HMOs and the gut microbiome, it is 
unknown whether supplementation via 
another woman’s milk, in the absence of a 
maternally transferred microbiome, would 
result in the same beneficial effects.  

An alternative approach would be to 
synthesise specific HMOs and offer these 
as a supplement to infants, which could  
be given regardless of the type of milk  
the infant was on. Ideally this would be  
in powder form, since displacement of 
volumes of MOM is a theoretical 
disadvantage. Synthesis of HMOs is 
possible, and is currently undertaken, but 
some, including DSLNT are difficult to 
produce, and only small quantities are 
available. Current quantities would not 
allow for widespread supplementation, 
even if restricted to extremely preterm 
infants (TABLE 2).30  

Summary 
NEC is a serious disease with a high 
mortality and morbidity rate in preterm 
infants. Several factors modifying 
incidence of NEC are identified, among 
which maternal breast milk has significant 
role. HMOs are complex sugars found in 
breast milk that might play an important 
role in NEC prevention, through 
modulation of the gut bacteria or direct 
effect on the gut cells (FIGURE 3). Great 
variability in HMO profiles relates to 
structure modifications; these are 
genetically determined by the individual 
abilities of women to produce 
fucosyltransferases. DSLNT is an HMO that 
has been observed in higher levels in the 
breast milk of infants who do not develop 
NEC and additionally is associated with 
more mature community structures of gut 
bacteria. Clinical trials in term infants 
show that HMO supplementation is safe, 
well tolerated and linked to a shift in gut 
bacteria patterns. Supplementing preterm 
infants is theoretically possible. The  
impact of HMOs on gut microbiome, 
supplementation and synthesis possibilities 
are potential areas for future research.  
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